Giant pH-responsive microgel colloidosomes: preparation, interaction dynamics and stability.
نویسندگان
چکیده
The interactions of two oil droplets grown in the presence of swollen, lightly cross-linked cationic poly(tert-butylamino)ethyl methacrylate (PTBAEMA) microgels was monitored using a high-speed video camera. Three oils (n-dodecane, isopropyl myristate and sunflower oil) were investigated, each in the absence and presence of an oil-soluble cross-linker [tolylene 2,4-diisocyanate-terminated poly(propylene glycol), PPG-TDI]. Adsorption of the swollen microgel particles was confirmed by interfacial tension, interfacial elasticity and dilational viscosity measurements on single pendant oil droplets, and assessment of the oscillatory dynamics for coalescing droplet pairs. Like the analogous bulk emulsions, particle adsorption alone did not prevent coalescence of pairs of giant Pickering emulsion droplets. However, prior addition of surface-active PPG-TDI cross-linker to the oil phase results in the formation of highly stable microgel colloidosomes via reaction with the secondary amine groups on the PTBAEMA chains. Colloidosome stability depended on the age of the oil-water interface. This reflects a balance between the adsorption kinetics of the PPG-TDI cross-linker and the microgel particles, each of which must be present at the interface to form a stable colloidosome. Colloidosome formation was virtually instantaneous in n-dodecane, but took up to 120 s in the case of isopropyl myristate. The impact of an acid-induced latex-to-microgel transition on the interaction of giant colloidosomes (originally prepared at pH 10 using isopropyl myristate) was also studied. This acid challenge did not result in coalescence, which is consistent with a closely-related study (A. J. Morse et al., Langmuir, 2014, 30(42), 12509-12519). No evidence was observed for inter-colloidosome cross-linking, which was attributed to retention of an aqueous film between the adjacent pair of colloidosomes.
منابع مشابه
Doubly crosslinked microgel-colloidosomes: a versatile method for pH-responsive capsule assembly using microgels as macro-crosslinkers.
A new family of pH-responsive microgel-colloidosomes was prepared using microgel particles as the building blocks and macro-crosslinker. Our simple and versatile method used covalent inter-linking of vinyl-functionalised microgel particles adsorbed to oil droplets to form shells of doubly crosslinked microgels (DX MGs) and was demonstrated using two different microgel types.
متن کاملMonodisperse stimuli-responsive colloidosomes by self-assembly of microgels in droplets.
We introduce a novel and versatile technique to fabricate monodisperse stimuli-responsive colloidosomes using stimuli-responsive microgel particles as building blocks, aqueous droplets as templates, and microfluidic devices to control the assembly. Our colloidosomes exhibit approximately 80% decrease in volume when actuated; thus, they can be of immense potential in applications that require ta...
متن کاملColloidal assembly route for responsive colloidosomes with tunable permeability.
We present a robust and straightforward approach for fabricating a novel colloidosome system where colloidal particles are assembled to form colloidal shells on the surface of stimuli-responsive microgel scaffolds. We demonstrate that the structural properties of the colloidal shells can be controlled through the colloidal particle size and modulus, and the state of supporting microgel particle...
متن کاملIncorporation of gold nanoparticles into pH responsive mixed microgel systems
Abstract: This research attempts to demonstrate that gold nanoparticles are stable and easily dispersed in mixed microgel systems. In order to prepare stable and controllable responsive systems, the polymers were chosen to be pH responsive. As a result, that the charge signs (+/-) and level could be readily manipulated by adjusting the background solution pH. A switchable ‘on’ and ‘off’ system ...
متن کاملDirect imaging and spectroscopic characterization of stimulus-responsive microgels.
Scanning transmission X-ray microscopy has been employed to visualize pH-responsive acid-swellable microgel particles directly in their swollen state in aqueous acidic solution. Moreover, NEXAFS studies confirm that the nitrogen atoms of these cationic microgel particles are completely protonated at low pH.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 12 5 شماره
صفحات -
تاریخ انتشار 2016